Reflexion

CLARA ET SOCRATE : SUR LES MATHÉMATIQUES


Dans la même rubrique:
< >

Jeudi 25 Octobre 2018 - 11:16 La barbarie commence seulement

Jeudi 11 Octobre 2018 - 21:00 Le rêve du pape François


PAR ROMAIN ANGELES, AOÛT 2006


romain.angeles@gmail.com
Vendredi 14 Septembre 2007

CLARA ET SOCRATE : SUR LES MATHÉMATIQUES
1. Clara est en train de lire un livre dans la cours d’école, à midi. Socrate la voit assise, seule et s’approche d’elle.
2. Salut Clara!
3. Hé salut Socrate, comment ça va?
4. Ça va pas mal, quoiqu’il y ait quelque chose qui me hante l’esprit depuis quelques jours…
5. Ah bon…qu’est-ce que c’est, peut-être que je peux t’aider?
6. En fait je me pose la question suivante depuis quelques temps : qu’est-ce que sont les mathématiques?
7. Haha! Encore une question facile!! Sacré Socrate, je me demande d’où te viennent ces idées; jamais de ma vie je ne me serai posée cette question! Mais soit, je vais essayer de t’aider comme je peux. Tu te demandes ce que sont les mathématiques?
8. Oui…
9. Tu dois déjà avoir une piste de réflexion je crois…
10. En effet. Je me suis posé la question suivante : quelle est la première chose qui me vient en tête quand je dis "mathématiques"? Qu’est-ce que tu répondrais à cette question, toi, Clara?
11. Euh…mathématiques? Les nombres!
12. C’est ce que je me suis dit aussi. Mais est-ce qu’il y a autre chose aussi?
13. Laisse moi réfléchir…À l’école, en mathématiques on apprend à compter, donc ça c’est les nombres, mais on dessine aussi! En cours de maths on utilise un crayon, une règle, un compas, un rapporteur, une équerre aussi : on fait des formes. C’est la géométrie ça. Est-ce que ça fait toujours partie des mathématiques ça Socrate?
14. Bonne question, je me suis posé exactement la même chose figure toi! Si on réussit à répondre à cette question, je suis sûr qu’on aura fait un grand pas dans notre investigation.
15. C’est vrai que c’est pas simple : d’un côté on a les nombres, et ça c’est sûr que c’est les maths, mais d’un autre on a des formes.
16. Est-ce que la géométrie fait partie des mathématiques?
17. Je dirai que oui, parce qu’à l’école quand on apprend à calculer ou à faire des formes, ça s’appelle toujours des mathématiques.
18. Peut-être que tes professeurs ne se sont jamais posés cette question, ou peut-être qu’ils ont été paresseux et qu’ils ne voulaient pas séparer les deux matières. Et même s’ils ont raison, on ne devrait pas les croire simplement parce que ce sont des professeurs, ou des adultes. Il faudra se le prouver à nous mêmes. Qu’est-ce que tu en dis?
19. Je suis d’accord. Allons-y alors, on a encore toute la récréation devant nous!
20. J’espère que ça suffira. Bon, alors notre première question est la suivante : qu’est-ce que sont les mathématiques?
21. On pourrait regarder ce qu’ils disent dans le dictionnaire, et trouver l’origine du mot.
22. Bien pensé Clara…
23. Alors, mathématiques : du grec mathêma qui veut dire science, blablabla… Ils mettent tout un tas de mots impressionnants pour nous perdre j’ai l’impression.
24. Restons avec l’étymologie grecque du mot : science. Regarde le mot science dans le dictionnaire maintenant…
25. Science : du latin scire qui veut dire savoir.
26. Bon, alors les mathématiques nous permettent de savoir des choses. Ça c’est leur fonction, c’est intéressant, mais ça ne répond pas à notre question de départ.
27. On devrait commencer par ce dont on est sûr…c’est-à-dire que les nombres font partie des mathématiques, et peut-être qu’à travers ça on pourra prouver si la géométrie fait partie ou non des maths.
28. D’accord. On pourrait se demander maintenant ce que sont les nombres. Quand tu penses à l’idée de nombre, de quoi est-ce que tu supposes l’existence?
29. Je ne suis pas sûre de comprendre ta question Socrate…
30. Sur quelle idée plus primaire est-ce que l’idée de nombres est fondée? Pour que les nombres existent, quelle autre idée antérieure doit exister?
31. Mmm…
32. Ok, pensons à ça : qu’est-ce qu’on fait avec les nombres?
33. On compte. On peut les additionner, les multiplier…
34. Avant ça encore, plus simplement. Si je te donne deux nombres : par exemple 2 et 3. Qu’est-ce que tu peux faire avec avant de faire des opérations?
35. Je peux les comparer!
36. D’accord, et comment fais-tu ça?
37. Je dis que 2 est plus petit que 3.
38. Très bien. Tu peux me donner un exemple concret de quelque chose de 2 et quelque chose de 3?
39. Sans problème Socrate! Je peux dire qu’un jus d’orange de 2 litres est plus petit qu’un jus de 3 litres.
40. En effet. Donc on doit d’abord s’accorder sur l’existence jus d’orange.
41. C’est sûr ça! Franchement Socrate!
42. D’accord. Ensuite, qu’est-ce qu’on suppose? Si je te dis par exemple que 3 Claras sont plus grandes qu’une Clara, qu’est-ce que tu penses?
43. Haha! Ça fait bizarre. Il faudrait que j’aie deux sœurs jumelles, mais même là, on n’aurait pas le même nom et on ne serait pas exactement pareilles. C’est étrange ce que tu me demandes Socrate, je ne vois pas le lien avec le jus d’orange…
44. Le jus d’orange existe. Clara existe. Jusque là on est d’accord. Maintenant, quelle idée existe dans le jus d’orange qui n’existe pas chez Clara, de sorte que je puisse parler de 2 litres et 3 litres de jus, mais pas de 2 ou 3 Claras?
45. Bien, moi, je suis unique, mais le jus d’orange, il peut y en avoir plein partout.
46. C’est vrai ça. Donc, de quoi est-ce que je parle quand je parle de litres?
47. C’est des volumes, je crois. C’est ça Socrate?
48. Oui c’est ça. Ce sont des volumes. Qu’est-ce que tu connais d’autre à part les volumes?
49. Je connais les grammes aussi. Ça s’appelle la masse je crois. Les mètres aussi, ça c’est les mesures. C’est tout non?
50. On pourrait dire que l’argent aussi fait partie de ces choses là?
51. Bien sûr. Hé, je pense que je comprends : toutes ces choses là on peut les compter, on peut utiliser des nombres avec, mais pas avec moi par exemple.
52. Exactement. Maintenant si on devait trouver l’idée encore plus générale qui englobe les volumes, les masses, etc., comment ça s’appelle?
53. L’idée de quantité?
54. Exactement, la quantité, ou la grandeur. Est-ce que tu es d’accord avec moi pour dire que le volume, la masse, etc. supposent l’idée de quantité?
55. Oui, je suis d’accord. Et moi, par exemple, je n’ai pas de quantité. On ne peut pas prendre deux "moi" ou la moitié de "moi", alors qu’on peut prendre deux litres de jus.
56. Exactement. On était arrivé à l’idée de mesure à travers les nombres. On avait comparé 2 litres de jus et 3 litres de jus et on avait dit que 2 litres c’était moins que 3 litres. Donc à partir de l’idée de nombre, on est revenu à l’idée de quantité. Maintenant, laquelle est plus élémentaire à ton avis, Clara?
57. Wow, ce n’est pas facile comme question! Mais je vais essayer d’y répondre en prenant le temps d’y réfléchir. Sois patient s’il te plaît Socrate. Alors, en gros tu me demandes la chose suivante : est-ce que la quantité suppose l’idée de nombres, ou est-ce que les nombres supposent l’idée de quantité? Je ne suis pas sûre…
58. Laisse moi t’aider avec une autre question : est-ce que tu peux parler de quantité sans parler nécessairement de nombre? Est-ce que tu peux parler de nombres sans parler nécessairement de quantité?
59. C’est évident que je ne peux pas parler de nombres sans parler de quantité. Si je parle de 2 et 3 comme nombre, je peux tout de suite dire que 2 est plus petit que 3, donc je parle tout de suite de quantité. Maintenant, si on parle de quantité seulement, par exemple ta taille et ma taille, je peux facilement dire que ton corps est plus grand que le mien, sans avoir recours aux nombres. Je suis satisfaite de mon raisonnement : l’idée de quantité est antérieure à celle de nombre.
60. On est d’accord là-dessus. Tu m’impressionnes Clara, pour ton âge, tu as beaucoup plus de sens commun que beaucoup d’adultes!!
61. Merci Socrate!
62. Donc les nombres viennent de l’étude des quantités.
63. Oui.
64. On pourrait donc dire que les mathématiques étudient les quantités, et que les nombres servent de métaphore à ces quantités?
65. C’est vrai, parce que quand je dis 2, ou 3, ou n’importe quel nombre, rien ne me vient à l’esprit, je suis obligé de dire 2 litres, ou 3 bananes. Les nombres tout seuls comme ça, ça ne veut rien dire. C’est comme un langage qu’on a inventé pour représenter les quantités de choses.
66. Exactement. Les arabes encore n’écrivent pas les nombres de la même manière. Donc on peut dire avec confiance que l’écriture du nombre et même sa prononciation et sa forme n’ont aucune signification en soi, mais représentent une métaphore pour représenter des relations entre quantités. On pourra se lancer dans une investigation plus approfondie sur les nombres une autre fois, car cela mériterait notre attention. Mais pour le moment, restons avec notre idée de départ, c’est-à-dire de comprendre ce que sont les mathématiques. Alors on a dit que quand on étudie les nombres, on étudie des quantités. Maintenant, permets-moi de te poser la question suivante Clara : qu’est-ce que l’idée de quantité suppose?
67. Ah non!!! J’étais sûre que tu allais me demander ça!! Ça me paraît encore plus difficile que ce qu’on a fait tout à l’heure. Mais si on suit le même raisonnement, il faudrait trouver des exemples de quantités différentes, c’est ça Socrate?
68. Oui, c’est à peu près ça, en fait tu dois trouver des exemples de manifestations de l’idée de quantité. On oublie les nombres, je veux simplement que tu compares la quantité des choses.
69. Tout à l’heure j’ai comparé ta taille avec la mienne. J’ai dit que tu étais plus grand que moi.
70. D’accord, quel autre exemple tu peux trouver, autre que la taille?
71. Le volume? Comme avec le jus…
72. D’accord, comparons des volumes alors. Qui occupe un plus grand volume, toi ou moi?
73. Je dirai que c’est toi.
74. Comment tu le sais?
75. Parce que tu es plus grand, et tu es plus large que moi.
76. Comment est-ce qu’on pourrait vérifier ça?
77. On pourrait faire comme Archimède, non?
78. En effet. Et si on ne pouvait pas, si on devait seulement, en regardant, décider si un volume est plus grand qu’un autre? Pour ça, je te conseille d’observer des objets plus simples, comme des verres par exemple. Quand tu vas manger dans des fast-foods, si tu vas manger dans ce genre d’endroit, on te propose différents volumes pour ta boisson, oui?
79. Oui : petit, moyen et grand normalement.
80. Si je prenais un verre petit, un moyen et un grand, et je les mettais devant tes yeux maintenant, est-ce que tu pourrais me dire lequel est le plus grand?
81. Bien sûr!
82. Maintenant si je prenais une bouteille d’eau quelconque, d’à peu près la même hauteur et largeur que le verre moyen, et je la posai à côté, est-ce que tu pourrais me comparer son volume avec les autres verres?
83. Ça serait difficile…mais c’est sûr que je ne pourrais pas le dire avec autant de confiance que pour les 3 verres.
84. Qu’est-ce qui te permet de comparer rapidement et avec précision les 3 verres, et pas la bouteille?
85. Ils ont la même forme?
86. Exactement! Ils ont la même forme. Donc qu’est-ce qui te permet de comparer des quantités entre elles?
87. La forme qu’elles ont en commun?
88. Exactement. Je vais te poser la question suivante : est-ce que tu peux imaginer une quantité qui n’a pas de forme? Et, est-ce que tu peux imaginer une forme qui n’a pas de quantité?
89. Wow! Je crois que je commence à comprendre où tu veux en venir. Une quantité doit avoir une forme, même si cette forme doit être très petite. Et une forme doit avoir une quantité, sinon elle n’existerait pas. Les deux principes sont reliés, c’est comme s’ils venaient ensemble!
90. C’est vrai, on pourrait dire qu’ils sont synchroniques. Donc étudier les quantités, ça revient à étudier les formes non?
91. Oui, oui…En étudiant les formes, on étudie les quantités, c’est obligé.
92. D’accord, et comment s’appelle l’étude des formes? Comment s’appelle la matière à l’école pendant laquelle tu étudies les formes?
93. C’est la géométrie! Là je comprends!! Quel voyage tu m’as fait faire Socrate, pour revenir à la géométrie!! Si je récapitule ce qu’on a dit : les nombres supposent les quantités, et les quantités et les formes sont interdépendantes, donc étudier les formes, ce que fait la géométrie, revient à étudier les quantités, et donc les nombres...
94. Ce qu’on appelle l’algèbre. Bravo Clara!
95. C’est vraiment intéressant comme raisonnement Socrate, simplement en cherchant les suppositions des idées, en cherchant leur fondement, ou leurs idées antérieures, on est capable de prouver des choses assez complexes.
96. Essayons de voir jusqu’à où peut nous mener ce raisonnement : on est passé des nombres aux quantités et des quantités aux formes. En étudiant les formes, on étudie les nombres. Mais en étudiant les nombres tout seuls, on ne fait pas forcément de la géométrie. Rappelle-toi ce qu’on avait fait avec le doublement du carré. On avait trouvé que la racine carré de 2 se construisait par la diagonale d’un carré de côté 1. Donc ce nombre, avec une simple règle n’était pas constructible, il nous fallait un principe de géométrie pour le générer : il nous fallait tracer une forme pour les représenter. Ce sont des exemples concrets de nombres qui n’ont pas de sens en soi, mais prennent vie quand on comprend qu’ils viennent de formes géométriques.
97. Et le nombre pi dans tout ça?
98. Bien vu Clara. Pi aussi en soi, n’est représentable que par une métaphore d’un tout autre ordre, non plus par les nombres conventionnels, mais par une lettre grecque! C’est pour dire à quel point son concept est inaccessible avec l’écriture seulement. Mais quand on se tourne vers la géométrie, on le comprend beaucoup mieux : on peut tracer un cercle de diamètre 1, et regarder la longueur tracée par le périmètre du cercle : c’est pi. C’est là qu’on comprend encore mieux la limite de l’algèbre par rapport à la géométrie.
99. Les mathématiques, alors, dans tout ça, on pourrait dire qu’ils étudient les formes primordialement, et qu’à travers les formes, ils étudient les nombres?
100. Tout à fait. Et qu’est-ce qui est mieux : étudier les nombres seuls, ou étudier la géométrie qui crée ces nombres?
101. La science qui produit les nombres, évidemment!
102. Pense à cette idée : l’algèbre est à la géométrie comme la poésie est au rêve. Et c’est pour ça qu’un vrai mathématicien est aussi un poète. L’algèbre est un outil pour communiquer, comme l’écriture. Imagine que tu es partie en vacances en Grèce, et que tu visites l’Acropole d’Athènes, et que tu veux la décrire dans une lettre à ton amie. Tu vas utiliser des mots pour décrire des images, et des émotions que tu as ressenties en visitant ces endroits. Tu ne donnes pas ces images directement à ton amie, tu lui décris avec des mots afin qu’elle puisse se les imaginer par elle-même par la suite. C’est la même chose avec l’algèbre : les équations sont vides de sens si elles ne représentent pas des formes ou des relations géométriques et si en les lisant tu ne peux rien extrapoler d’autre dans ton esprit que les symboles devant toi. Alors que le vrai algèbre doit pouvoir, comme avec des phrases, générer dans ton esprit des formes, des mouvements et des relations entre ces choses! La cloche vient de sonner, je te laisse là-dessus Clara, on aura sûrement l’occasion d’en reparler plus tard. C’était une discussion très agréable et enrichissante, merci!
103. Merci à toi Socrate!!
104. Socrate part, Clara range ses affaires, et se dit à elle-même : "des fois je me demande s’il sait toutes ces choses avant de me parler, ou s’il les découvre vraiment en même temps que moi!"


Vendredi 14 Septembre 2007


Commentaires

1.Posté par Zafari le 23/12/2007 21:06 | Alerter
Utilisez le formulaire ci-dessous pour envoyer une alerte au responsable du site concernant ce commentaire :
Annuler

Tres intéressant comme raisonnement.

2.Posté par ChrisyChris le 08/01/2009 23:36 | Alerter
Utilisez le formulaire ci-dessous pour envoyer une alerte au responsable du site concernant ce commentaire :
Annuler

Article super intéressant. Toutes mes félicitations!

Coup de gueule | Croyances et société | Reflexion | insolite, humour, conspiration...


Publicité

Brèves



Commentaires